当前位置: 工艺玻璃 >> 工艺玻璃介绍 >> 2022智能汽车盘点下智能化下半场开
作者|尹汉司马洁,本报告由势乘资本和光锥智能联合发布
年中国新能源汽车渗透率首次超过0%,随着新能源汽车进入下半场,体感上我们也见证了自主品牌最近几年的高速发展,竞争愈发激烈的情况下,更多更好成本更低的智能化配置从未像现在一般在消费者面前涌现。不管是智能化的中控大屏、ARHUD、主动安全系统、还是ADAS、激光雷达等配置,以往只在高端车型上的选配正在持续降维落地,缺芯背景下国产替代迎来最佳的发展机遇,也势必打破国际T1对于我国汽车供应链的垄断格局。
今年我们不是第一次谈论智能汽车,也不会是最后一次,不同的是我们以往更多的是从产业链的角度来解读汽车这个高端制造行业,这次我们试图从AI的角度重新理解智能汽车的变革逻辑,即在第四次科技革命的开端,AI+机器人的大背景下,汽车行业又在发生如何的改变?
一、智能汽车的定义及分类
我们参考人工智能的分支可以将智能汽车也分为以感知/计算机视觉为主的认知智能、以自然语言识别为主的交互智能、以神经网络/深度学习为主的决策智能。分别对应的也是智能汽车的三条主线,即ADAS、智能座舱与高阶智能驾驶。
资料来源:势乘资本公开资料整理
回到智能汽车的定义上来说,智能汽车是搭载先进传感系统、决策系统、执行系统,运用信息通信、互联网、大数据、云计算、人工智能等新技术,具有部分或完全自动驾驶功能,由单纯交通运输工具逐步向智能移动空间转变的新一代汽车,按照大类来分我们又可以分为智舱和智驾。按照这个逻辑我们来初步测算一下智能汽车的渗透率,智舱因为范围比较难以界定,所以我们选择智驾作为参照点。根据汽车之家数据,可推测出整体智能汽车渗透率在40%上下。
数据来源:汽车之家
二、智能汽车的整体市场
22年新能源汽车一二线城市销售占比接近70%,依旧是新能源汽车最大市场,其中9月上海以辆上险数遥遥领先第二名深圳(辆上险)。10月上海依旧居首,但环比下降2%,排名第二的城市深圳环比下降22%。我们认为智能汽车的主战场依旧集中在一线及新一线城市,结合22年新能源汽车销量万辆,单车智能化功能占单车价值比约为20%,则智能汽车市场规模可达亿以上。
数据来源:电车人
三、电子电气架构变迁,软件定义汽车趋势显著
汽车的智能化的大方向已经成为了产业共识和市场共识,然而什么叫智能化却没有一个明确的定义。有观点认为智能化的关键在于智能汽车的软件“可迭代、可演进”,即汽车将主要通过软件实现更多的特性和功能,从高度机电一体化的机械终端转变为以软件为中心的移动电子设备转型,同时汽车软件可实现的功能范围更丰富多样。从另外一个角度也可以理解为用芯片替代保险丝和继电器。
该趋势在以下方面有显著体现:
1.单车软件代码行数呈指数增长,目前高端车型代码数已超1亿行,未来几年将超亿行。
2.单车价值软件占比增加。据麦肯锡预计,有望在年达到0%。
.汽车软件市场呈高速增长。目前国内汽车软件产业增长以应用型软件为主,主要为智能驾驶增长迅速,智能座舱软件已具规模、增长相对平稳,车联网处于相对起步阶段。
(一)计算集中化,EE架构由分布式向集中式升级
主要因以下需求倒逼EE架构走向集中化:
1.传统ECU架构的算力水平无法满足爆炸式的数据处理需求和更高的运算速度,此外还涉及复杂的逻辑运算和非结构数据处理场景,同时ECU各控制模块间的算力资源也无法共享;
2.传感器数量大幅增加且需要融合,对车载通讯带宽和时延的需求提高,DCU的以太网通讯可允许每秒千兆比特的传输;
.线束革命需要,减少线束、无线化可提高生产效率,同时降低线束和布线成。
以上才能使智能驾驶和智能座舱成为可能。博世将电子电气架构的发展分为六阶段:
资料来源:博世
当前不同车企/Tier1根据自身的规划,对域划分个数不尽相同,如博世分为5个域(动力域、底盘域、座舱域、自动驾驶域、车身域);大众MEB平台车型和华为分为个域(自动驾驶域、智能座舱域、车身控制域[大众]/整车控制域[华为]);特斯拉分为个域(前车身控制域、左车身控制域、右车身控制域)。
EE架构主要由传感器、控制器、执行器等组成,传感器获得汽车行驶的状态信息,传输到控制器,由控制器算法发出执行指令,由执行器完成具体操作。其集中化升级包括硬件、软件、通信架构三大方面的升级。
硬件不再是单一功能芯片,需要有更强大的计算平台。此外,硬件需要可扩展、可更换,传感器即插即用。
软件不再是基于某一固定硬件开发,需要可移植、可迭代和可拓展,做到跨车型、跨软件,跨车企的软件重用。
通信技术从传统的CAN、LIN、Flexray等走向车载以太网技术,具备高带宽(Mb/s)、通信协议成熟、高延展性、易平台化等特点,仅需要一对双绞线进行传输,降低连接成本的同时也达到减重的目的。
(二)SOA软件架构分层化、模块化,软硬件解耦化
软件架构分层化、模块化,软件独立为核心零部件产品,使得软硬件可解耦,实现并行开发,并可实现从面向信号的架构走向SOA(面向服务的体系结构,service-orientedarchitecture,其本质是根据软件需求组合调配硬件功能)。SOA软件架构下的底层软件主要包括系统内核OS(含RTOS)、硬件抽象层(BSP及Hypervisor)及中间件层。
车载操作系统是唯一可驱动硬件工作的部分,内核主要有Linux家族(包括Android)、RTOS家族(包括QNX\Vxworks)等。
智能座舱域中,IVI注重消费者体验和应用生态丰富性,以Android系统为主;仪表盘因高安全性要求以QNX为主;自动驾驶系统因更高实时性及功能安全要求,以RTOS为主,主流RTOS有三种RT-Linux、QNX、VxWorks。随着域集中及域融合的趋势,智能座舱OS重开放、兼容和生态,与自动驾驶OS重安全、实时和稳定,以上两者将是对OS的核心诉求。
同时主机厂开始探索内核程序的替代,可不再依赖外部软件服务方,无需开放核心数据,自行完成整车OTA。而操作系统的成功与否,关键在于生态系统,需要搭建起完整产业链上的软件开发者、芯片企业、终端企业、运营商等各个主体的共生生态。
此外引入虚拟化技术、中间件技术等,使得底层软件具备接口标准化、相互独立、松耦合三大特点,因此应用层功能够在不同车型、硬件平台、操作系统上复用,并可以通过标准化接口对应用功能进行快速升级。
虚拟化技术实现了底层物理硬件的隐藏,可实现多个操作系统共享硬件,QNX是当前主流。中间件技术是对底层软件模块的封装和接口标准化,是系统软件和应用软件之间连接,呈现标准统一化趋势。车厂常依赖于第三方供应商提供中间件,最著名的是AUTOSAR的RTE。但AUTOSAR的开发工具链及基础软件被几家国外零部件企业所垄断,因此国内企业也开始自己研发,如华为智能驾驶域控制器MDC。
(三)软件和服务成为主机厂实现差异化的核心能力
汽车运营商业化:汽车产业逐步从“纯硬件销售”转变为“软硬件持续升级和订阅”的商业模式。软件和服务能力带来更多差异化体验,成为主机厂未来竞争核心。
OTA保障全生命周期的服务升级:“软件定义汽车”要求主机厂必须缩短产品上市周期、产品基于消费者需求、支持不断的迭代、对市场需求迅速反馈等。虽当前主要为SOTA,但未来FOTA的趋势确定。
产业格局发生变化:由于汽车软件开发难度提升,传统OEM和Tier1的研发能力难以满足需求,汽车软件产业链被重塑。汽车产业链逐渐从主机厂、Tier1、Tier2的线性关系演变为主机厂、供应商以及互联网企业均参与进来,从汽车的全生命周期覆盖整个产业的网状关系,具有软件研发优势的互联网和ICT企业入局;部分车企向上游软件环节布局,下游向应用服务延伸;互联网类企业凭借与消费者的深度关联扩展汽车软件后续应用服务价值。
四、线控底盘国产替代迫切,智驾催生行业发展
电动智能变革驱动汽车底盘线控化升级。传统燃油车的底盘系统由驱动、传动、转向、制动四部分组成,机械、液压零部件繁多,结构复杂,无法满足高阶自动驾驶对车辆操控性和主动安全的需求;通过线束传输信号+电机直接驱动能实现对执行机构高效、精准的控制,底盘子系统的电动智能升级驱动线控驱动、线控悬架、线控转向、线控制动等线控系统的成长。伴随整车电子电气架构的集成化升级,对于底盘系统集成化的要求越来越高,底盘域控制器将作为整车“小脑”,进行多执行系统的协同控制,底盘也将由子系统线控化向整个底盘全线控进化,线控底盘系统标准化、模块化,底盘运算控制集成化、协同化将成为重要发展趋势。
线控底盘域控架构
资料来源:中金公司
线控底盘由线控转向、线控制动、线控换挡、线控油门以及线控悬挂五大系统组成,和传统底盘的最大差异是通过线(电信号)取代了传统的机械、液压、气动等结构从而实现更精密的控制,其中线控制动及线控转向是两大关键产品。对于高级别自动驾驶而言,底盘执行机构对系统响应和精度有着更高的要求,因此线控底盘是实现高级别自动驾驶的必备条件。功能安全冗余技术和横纵协调控制是最主要的两个技术难点,目前核心技术依旧被欧美日等一线T1掌控。
线控底盘技术发展历史
资料来源:中金公司
线控底盘系统研究框架
资料来源:中金公司
(一)线控底盘的驱动因素
1.高阶自动驾驶:高阶自动驾驶要求实现主动动力输出和控制能力,线控底盘取消机械、液压、气压等辅助装置,采用电信号传递信息完成制动、转向灯执行动作,能够1)通过传感器感知驾驶意图及行车状况,实现对整车动力输出的主动控制;2)具备响应速度快和控制精度高的特点,能够满足自动驾驶对实时响应的需要,安全性更高。
2.电子电气架构升级:集成式电子电气架构加速线控底盘技术应用。分布式架构下,制动、转向、驱动为独立子系统,由单独的ECU分别控制,由于底盘运动执行信号来自驾驶员,各子系统协同需求较低,EPS、ABS、ESP、线控驱动等子系统在分布式EEA架构下可独立应用。随着整车智能化程度的提升,分布式架构存在各子系统难协同、网络结构复杂、软硬件耦合关系强、无法统一OTA升级等问题。线控底盘融合各子系统及底盘域控,能有效解决上述问题,实现底盘运动控制运算的集成化、协同化,有望受益电子电气架构升级实现加速落地。
.集成化造车:远期来看,集成化造车要求上下解耦,线控底盘技术是必要技术。展望未来,滑板底盘是集成化造车的集大成者,使得整车制造实现上下装结构独立、分体开发,从而有效缩短研发周期、降低造车门槛,有望成为汽车底盘的终极形态。从结构上看,滑板底盘集成底盘所有子模块,是独立于上车体的模块化产品,需要实现机电一体化和控制集中化。滑板底盘上下解耦的核心需求要求在执行层面做到自主动力输出,有望作为终极指引,推动线控技术的开发和应用。
综上所述,快速响应、精确控制、主动控制、安全性高、轻量化、低能耗、电动化、满足个性化需求、易于整车智能化升级等是线控底盘的主要优势。
(二)线控制动
线控制动目前在新能源汽车的渗透率并不高,据佐思气研统计年中国线控制动装配率为1.6%,年有望突破2.5%。线控制动市面上主要有EHB(电子液压制动)与EMB(电子机械制动)两大类产品。相较于传统全液压制动系统而言,线控制动可以将响应时间由00-毫秒降低至毫秒(ibooster)甚至90毫秒(布雷博)的同时也不会存在行车电脑和油压线路控制脱节等问题,因此线控制动的主要优点在于响应时间短、控制精度高以及主动控制能力。
ABS/ESC与EHB、EMB制动过程
资料来源:中金公司
EHB电子液压制动(单价约元左右)通过包含了电机、泵、蓄电池等等部件的综合制动模块来取代传统制动器中的压力调节器和ABS模块等,产生并储存制动压力,可分别对4个轮胎的制动力矩进行单独调节,EHB中由电机取代真空助力器,直接推动主缸活塞实现制动,既解决新能源汽车中真空助力的问题,又提高了制动响应速度,是近三年的主流方案。中国市场90%大部分线控制动系统为以博世的iBooster与IPB系列为代表的EHB产品,包括特斯拉(Model、ModelY),蔚来(EC6、ES6、ES8)、理想、小鹏、威马等大部分主机厂,也有部分选择联创电子的C-booster系列。
EMB抛弃了传统制动系统的制动液及液压管路等部件而通过电机驱动制动器产生制动力达到同样的效果,具备维保简单、响应时间短等优点,完全电子化能够与其他电控系统有效的整合,能够发挥更多的功能;目前市面上没有完全成熟的方案,Brembo、万都、瀚德、长城等国内外厂商在这个领域积极的探索,预计年能够实现量产。
技术难点:
目前技术难点在于无限次的电机闭合,闭合出现失效或者断档就会导致刹车距离变长,国家标准要求刹车次数需要达到万次在各种工况下的运行,即车辆运行15-20年的时间;国内尚无厂家能够实现,世界上仅有博世和ABB的产品能满足标准。
核心原因是目前国内的解码器的灵敏度、稳定性、使用寿命和国外厂商仍有很大差距,失效率高于国外产品10%以上。
永磁体退磁温度需要达到度,目前电机温度能控制在度,不过也担心温度通过轴承传导。
集成化趋势:
OneBox方案(AEB自动刹车系统/ESP和电子助力器集成)由于其更高的能量回收效率、集成度高、体积小、重量轻、成本低等优势相比冗余的ESP车身稳定系统和电子助力器相互独立的two-box方案有望成为未来的主流,但是技术上可能存在一定安全隐患,例如踏板解耦后,需要通过传感器感受踏板力度带动电机推动活塞,软件调教难度大。
目前市面上的产品距离支撑高级别的自动驾驶仍然有不少距离,除博世OneBox方案(集成ibooster与EPS电子制动并加上RBU回馈式制动单元互为冗余)以及大陆的MKC1(与MKHBE电子制动互为冗余)宣称支持L4级别自动驾驶以外,其他供应商在支持L2级别自动驾驶的水平左右,市面上成熟方案依旧非常稀缺,国内诸如同驭、格陆博、英创汇智等创业公司也在探索的途中,我们整体预计国产化方案将于年小批量上车,24年开始逐步量产。
(三)线控转向
线控转向从最早的无助力,到后来机械液压助力(HPS)、电动液压助力(EHPS),再到如今广泛普及的电动助力(EPS),转向都依赖于驾驶者的力量,一旦转向柱与转向机分离,司机转动方向盘的力无法传递到转向机,从而可能引发交通事故;同时机械机构的转向比也相对较低。线控转向的目的是为了使得方向盘控制更加自由、车辆转向指令设计更加自由、驾驶体验的反馈更加自由。
线控转向的优势主要在于快响应速度及高灵活性,并且可根据路况通过调节实现更高的转向比(丰田OMG度+)具备更好的操控和稳定性。目前线控转向主要分为机械冗余式线控转向(DAS)与电控系统备份冗余式转向(SBW)两大类,除上文提到的优点外,线控转向同时也为智能座舱节省了更大的空间,使其具备实现多样化功能和生态的基础;目前单价约为1元左右。
机械冗余式线控转向(DAS),即线控系统出现故障的时候驾驶员可以自行接管通过机械结构保障驾驶安全;最早应用在宇宙飞船中,民用后由英菲尼迪Q50第一次搭载。
电控系统备份冗余式转向(SBW),即通过多个电机实现控制冗余度,通过传感器完全取代了方向盘与转向机之间的机械结构,除响应速度快、灵活性高之外,同时也节约了车辆的空间。
可靠性与高成本是当前落地的主要障碍,高阶智驾驱动下有望实现规模应用。线控转向硬件结构与R-EPS相似,主要区别在于软件算法复杂度大幅提升。目前,路感模拟、主动转向控制等核心技术尚不成熟+冗余备份带来额外硬件成本,阻碍线控转向落地。
目前仅英菲尼迪(DAS)、丰田(Onemotiongrip)等少数主机厂在线控转向技术上率先尝试,其他布局几乎为外资企业诸如博世、Kayaba、采埃孚、JTEKT等,国内厂商中长城汽车通过旗下长城精工率先布局,其他供应商还包括耐世特、联创电子、拓普集团等。21年底集度、蔚来、吉利正式成为线控转向技术发展和标准化研究联合牵头单位,将牵头线控转向相关国家标准的制定。目前集度已初步锁定设计方案,年初将进行样件测试,下半年即可开放集度线控转向相关体验硬件平台。
线控转向驱动因素:
智能驾驶驱动:EPS等动力助力转向系统的转向信号来自于驾驶员,需要借助机械传导实现助力,无法支持L+以上自动驾驶;线控转向由ECU接受方向盘转矩信号,综合车辆速度、加速度等路况信息进行分析并控制电动机产生转向动力,信号来源为软件算法,能够实现转向执行动作与驾驶员操作的解耦,满足高阶自动驾驶的需求,是实现自动驾驶的必需部件。
政策障碍扫除:年1月1日,中国转向标准GB-正式实施,新政解除过去政策对转向系统方向盘和车轮物理解耦的限制,中汽研标准所与集度、蔚来、吉利等OEM将共同推动制定中国线控转向的行业标准制定,为线控转向落地扫除政策障碍。
(四)滑板底盘
2年通用汽车在北美车展上的氢燃料汽车AUTOnomy上第一次使用了滑板底盘的概念,到年滑板底盘公司Rivian上市,同年国内厂商悠跑科技也发布了悠跑UP超级底盘,滑板底盘成为年的热门话题。归根结底,滑板底盘类似高度集成的平台化概念,即将转向、制动、三电、悬架等系统通过模块化的方式集成在底盘上,从而可以根据不同的车型进行模块化上下车体解耦的开发,缩短开发周期,低速商用车是当下最合适的落地场景。
滑板底盘从形态上和传统燃油车中使用的非承载式车身(即通过弹性元件连接大梁式结构的底盘,多应用于SUV上)有一定的相似点,均采用上下分离的结构,底盘都具备刚性。主要区别在于滑板底盘更低且用于新能源汽车上满足软硬解耦的接口。二者在理念上有非常大的趋同。
由于滑板底盘采用上下车体独立研发的形式,可以针对不同的场景选择上车体的形态,从而实现零售、巡逻、消防等特种车辆。另外滑板底盘也给部分研发能力有限的主机厂提供了更集成的选择,使其能够专注上车体的研发和交互上,通过通用接口连接缩短了开发周期。
由于滑板底盘类似集成平台,国外玩家主要包括Rivian、REE、ARRIVAL、CANOO等,国内核心玩家主要包括传统T1、具备自有场景公司(于万智驾等)、初创企业(PIXMoving、易咖智车、悠跑科技)等。掌控核心技术例如线控转向、线控制动、CTC电池(将电池布局在底盘上)轮毂电机等是重要的竞争要素。
目前行业对于滑板底盘仍旧存在一定的争议,在乘用车上落地依旧为时尚早。一方面滑板底盘存在一定的设计边界,为了安全性能可能失去部分的标准化优势;另一方面底盘作为主机厂的核心技术,供应链壁垒很难打破,现有的优势不足以使得车厂大规模采用;其次特斯拉的零件通用化率已达70%,并没有采用上下分体的滑板底盘也实现了高度的标准化,因此滑板底盘的趋势仍旧有待验证。
五、认知智能——智能驾驶的关键在于更好的感知和执行
(一)感知层雷达与视觉融合趋势明显
智能驾驶主要可以分为感知层、决策层与执行层,感知层主要可以分为:
环境感知,如附近车辆、车道线、行人、交通标志、信号灯等,利用四大硬件传感器。从传感器的形态和功能维度来看,可以分为几个阶段:
第一阶段:以超声波雷达为主的燃油车时代;
第二阶段:以超声波和毫米波雷达为主的高配置燃油车时代;
第三阶段:以超声波、毫米波、摄像头为主,实现L2/L2.5级别辅助驾驶的智能电动车;
第四阶段:在上述基础上加入激光雷达,实现包含城市等更高级别的自动驾驶。
车身感知,如车辆位置、行驶速度、姿态方位等,利用惯性导航、卫星导航和高精度地图。
网联感知,实现车辆与外界的网联通信以此来获得道路信息行人信息等,主要利用路侧设备、车载终端以及V2X云平台。
目前对哪种传感器最适合自动驾驶还没统一标准看法,主流自动驾驶技术路径分两种:
以特斯拉为代表的视觉算法:以摄像头主导、可搭配毫米波雷达,不使用激光雷达、高精地图、V-C2X等,不依赖外部车联网基础设施(具备中国特色)。其通过海量数据和庞大的计算能力去训练自动驾驶的神经网络:1.因其在自动驾驶上有先发优势,已售出百万台车,因此可依赖海量行车数据进行模型训练。2.进行训练的超级计算机(排名全球第5)由个GPU英伟达A(算力为21TFLOPS)组成,每秒运算达1.8EFLOPS,数据吞吐率为每秒1.6TB,存储容量为10PB。整体上,该种路径单车成本相对低但所需算法要求高,该路径相对小众。
以Waymo、百度Apollo等为代表的激光雷达主导的流派。硬件成本高但可进行远距离、全方位的探测。激光雷达的应用是打破特斯拉先发优势的利器。
激光雷达
激光雷达其本质是一种电磁波,波长在千纳米级,指向性强不拐弯,探测到很小的点,很多点集合起来就形成了点云(需要足够多光束),可精确(厘米级)还原三维特征,最大优势是准,有很多丰富的细节,探测距离远(-m),视角广阔且有更强的抗光干扰性,是L及以上自动驾驶的必备组件。劣势是比较贵,在恶劣天气会罢工。
主要包括激光发射(光源)、扫描(光束操纵)、接收(光电探测)和信息处理(测距方法)四大系统,每个系统下有不同技术路径。其中,光束操纵是最复杂、最关键的技术维度。
从激光波长看,目前最主流的是nm(70%占比),但Luminar等公司选用的是nm。
nm激光器可以直接选用价格较低的硅材质发射器,技术成熟、成本可控。而-1nm波段内激光都可以穿过玻璃体、不会被晶状体和角膜吸收,聚焦在视网膜上,因此nm激光雷达为避免对人眼造成伤害,发射功率需控制在对人无害的范围内,因此其探测距离受到限制。
nm激光会被人眼晶状体和角膜吸收,不会对视网膜产生伤害、更安全,因此其功率可以不受限,是传统nm硅光电系统的40倍,也可解决nm对雨雾的穿透力的不足的问题,在复杂气候天气下也能将有效探测距离保持在米以上。但nm激光雷达需要用到更昂贵的铟镓砷(InGaAs)发射器,因此价格上会高很多。
从光束操纵方式看,技术路径多样,沿机械式→半固态→固态的方向发展。混合固态作为当前过渡期主流,纯固态将会是激光雷达终极形态,芯片化架构是未来激光雷达发展方向。芯片化架构的激光雷达可将数百个分立器件集成于一颗芯片,降低物料成本和人力生产成本,同时器件数量减少也显著降低了因单一器件失效而导致系统失效的概率,提升了可靠性。
(1)机械式:通过不断旋转发射头,将激光从“线”变成“面”,达到D扫描目的。优势:扫描速度快、精度高、技术成熟,可实现60度扫描。劣势:成本高昂、装配复杂、生产周期长,BOM成本较高难以达车规量产要求,平均时效仅1千至千小时但车厂要求最低1万千小时。
(2)混合固态:即收发模组固定+转动镜子,镜面转动配合可扫描多个平面,如96个平面即等效96线(垂直方向),以实现扫描效果。
MEMS微振镜式。优势:集成度高、尺寸小、批量生产成本低、分辨率高、采集速度快。劣势:微振镜、悬臂梁等结构脆弱,工作寿命较短、有效探测距离短、视场角窄(小于度),多用于近距离补盲或前向探测。目前,目前MEMS振镜方案没有过车规的产品。
棱镜式通过2个斜面柱状镜头组合,调整棱镜转速以控制扫描区域,扫描图案形状若菊花。优势:点云密度高、探测距离远、可靠性更高、符合车规。劣势:单个雷达FOV较小、对电机轴承有较高要求。如大疆Hap即为棱镜方案。
转镜式是反射镜面围绕圆心不断旋转,从而实现激光的扫描。在转镜方案中,也存在一面扫描镜(一维转镜)和一纵一横两面扫描镜(二维转镜)两种。一维转镜线束与激光发生器数量一致,而二维转镜可以实现等效更多的线束,在集成度和成本控制上存在优势。
MEMS微振镜
棱镜式
转镜式
()纯固态:不再包含任何机械运动部件。
主流是Flash,不是以来回扫射的方式,而是拍照射出一片发散的激光。优势:体积小、结构简单、成本低、采集信息量大、技术成熟、易过车规。劣势:功率有限、探测距离短(50米以内)、精度不高,主要用于补盲或低速自动驾驶。
OPA相控阵技术,利用波之间的干涉,无需活动的机械结构就可实现扫描结果。优势:体积小、精度高、扫描速度快、可控性好、抗震性好。劣势:易受到环境光干扰、光信号覆盖有限、对材料和工艺要求苛刻、上游产业链不成熟、量产难度高、成本高昂。
图为Flash
图为OPA
从测距方法上看,主要可以分为飞行时间(ToF)测距法、基于相干探测的调频连续波(FMCW)测距法、及三角测距法等。ToF是目前中长距主流方案,FMCW难度较大,但随FMCW整机和上游成熟,两者未来将并存。
目前国内车型搭载的激光雷达,扫描方式基本都采用转镜方案,激光发射器采用nm和nm都有。典型车型搭载情况如下:
国产激光雷达上车情况
数据来源:感知芯视界、国家智能传感器创新中心传感器产品资料库平台
激光雷达主流产品参数
数据来源:公开信息整理
技术路径迭代带来的成本下降是推动激光雷达上车的重要因素。整体车载激光雷达的应用会呈“成本降低、性能提升(视场角和分辨率、信噪比、雨雪天气抗干扰性、相互间防扰、可靠性)、固态化、满足高级别自动驾驶功能安全”的方向进一步发展。
车载摄像头
摄像头最接近人眼成像,分辨率高、速度快、传递的信息丰富、成本低,是唯一可以读取“内容”信息的传感器。
但其需使用计算机视觉算法或深度学习进行解析、依赖数据训练,识别率不能保证%,可能判断失误。单目摄像头无法提供D信息、缺少深度感知能力,可能会有延迟,双目摄像头所提供的D内容准确性不高。与其他传感器不同,摄像头属于被动传感器,易受夜晚、雨雪雾霾等恶劣天气外界光不稳定的影响,且不擅长于远距离观察。
单目摄像头是通过图像匹配进行目标识别,通过目标在图像中的大小去估算目标距离,由于成本较低且能满足L以下级别需求,短期内单目摄像头为车载摄像头的主流方案。
双目摄像头则更加像人类的双眼,主要通过两幅图像的视差计算来确定距离,是视觉信息的三角测量结果,不依赖庞大的训练集、精度相对较高。但双目需要对每一个像素点都做立体匹配,存在如计算量大、系统性能要求高、立体算法匹配难度大,对摄像头间误差精度要求高等诸多挑战。比起LiDAR,双目摄像头最大的优势是成本,价格在几千元人民币。
车载摄像头一般是固定焦距的(目前车载摄像头每秒处理的图像在20帧左右,每秒处理的数据量巨大),其无法像人眼一样快速变焦,不同的焦距满足不同的范围。感光元件大小确定的情况下,焦距越长,视角越窄,但分辨率能大大提高。即在探测范围和距离两个方面,有不可调和的矛盾。实际使用时利用不同焦距的摄像头,来实现不同特定的功能,根据摄像头的安装位置,可以分为前视、侧视、后视、内置、环视等,以实现不同目标的监测。在高级别自动驾驶车辆上,配置的摄像头有多个甚至十多个。
典型车型摄像头配置情况
车载摄像头成本相对低廉,价格也从年的00多元持续走低,易于普及应用。随着目前计算集中化,摄像头有向“只采集不计算”方向发展趋势,即把计算部分放到域控制器中。在剥离了摄像头的计算功能后,摄像头BOM成本下降了约六成。如特斯拉前视摄像头,未配置SoC、MCU等计算模块。
毫米波雷达
毫米波雷达的抗干扰能力强,对降雨、沙尘、烟雾等离子的穿透能力要比激光和红外强很多,可全天候工作,可同时测速和测距,价格和体积适中。
但其测量精度差,空间分辨率有限(°-5°),俯仰测角/测高能力缺失,信号衰减大,容易受到建筑物、人体等的阻挡,传输距离较短,难以成像,不能做主传感器。
根据毫米波频率,国内集中在24GHz和77GHz两个频段,更高的射频频率导致更好的速度分辨率和精度。77GHz的毫米波雷达比24GHz的速度分辨率和精度提高了倍,能够检测小至零点几毫米的移动,探测距离更长,体积也可以实现其三分之一。随着技术成熟及成本下降,77GHz将逐渐取代24GHz成为未来毫米波雷达的主流。
数据来源:头豹研究院、国信证券研究所
毫米波雷达的技术总趋势是朝集成度更高、成本更低、体积更小、功耗更低、精度更高及多维成像的方向发展。芯片工艺上朝着利用CMOS工艺,将MMIC、MCU、DSP等集成在一颗SoC芯片中发展。
由于目前的量产毫米波雷达都只能称为D雷达或准4D雷达(4D指目标探测4个维度,包括它的速度、距离、水平角度、垂直高度),缺失或有很弱的俯仰测角/测高能力,导致雷达无法单独作为传感器识别前方的静止障碍物,因为其无法区分前方的车辆(真实障碍)和桥梁/井盖(虚假障碍)。
毫米波雷达的下一个方向就是高分辨的4D成像雷达。如华为高分辨4D成像雷达:1)水平分辨率达到一度,垂直分辨率达到两度,同时测量精度大幅提升;2)大视场无模糊,水平视场提升到±60°,垂直视场提升到±15°,纵向探测距离从米提升到00米以上。高分辨4D成像雷达具备可实现“高度”探测、分辨率更高、可实现对静态障碍物分类等优势,集中在前视区域应用,达到类似低线数激光雷达效果。
4D点云成像雷达代表产品
来源:各公司
转载请注明:http://www.aideyishus.com/lkyy/4416.html